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A graph-theoretic particle model is presented. The vertices of the graph represent 
elementary particles and the edges represent strong interactions. Each physical 
particle is described by an essentially unique labeled graph. Weak and elec- 
tromagnetic interactions become manifestations of the strong interactions. 
Observed particles are classified according to this model and new particles are 
predicted. Decay processes are illustrated in the model. A representation of 
particles in a 48-dimensional hyperspace is given and it is indicated that this 
may be the proper arena in which a dynamical theory can be developed. 

1. INTRODUCTION 

A particle model is presented in which there is one elementary particle 
and one basic interaction. We call the elementary particles vertices and the 
basic interaction is called the strong interaction. In this model, every particle 
is composed of vertices in a certain configuration and all interactions are 
manifestations of the strong interaction (we do not consider gravity in this 
work, although there is a good possibility that it cart be included later). 
Each vertex is a spin-�89 fermion and maintains an electric and color charge. 
The properties of a particle are determined by its graphical configuration 
and by the spins and charges of its vertices. 

In this work we mainly consider the qualitative features of the model. 
We first develop a classification scheme for particles in terms of their 
constituent vertices. This scheme includes all observed physical particles 
(Aguilar-Benitez et al., 1984). The allowed graphical configurations of the 
particles are determined by a few physically motivated rules. The con- 
stituents of hadrons are similar to that of the usual quark model (Close, 
1979) up through the level of charmed hadrons. Above this level, however, 
the two models diverge in their predictions. Next we give examples of 
various decay processes in terms of changing graphical configurations. 
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Finally, we set the stage on which a dynamical theory may possibly be 
developed. This is a 48-dimensional linear space which we call hyperspace. 

The present model has certain advantages over other particle models. 
First, there is no need to postulate different "generation" levels (three in 
the current quark model). These levels occur automatically and naturally 
in the present model. Second, one can "see" how the various particles 
(including leptons and photons) develop in decay and scattering processes. 
Third, particles are described concretely instead of as unphysical superposi- 
tions of various particles states. 

We hope to eventually develop a dynamical theory for this model which 
will give quantitative predictions, Such a theory might be called quantum 
graphicdynamics, or QGD. If  this program is successful, QGD would give 
a discrete particle model for which QED and QCD would be continuum 
approximations. 

2. GRAPHICAL CONFIGURATIONS 

We assume that there is an elementary particle, which we call a vertex, 
and that every physical particle is composed of vertices in some configur- 
ation. We also assume that there is an interaction called the strong interaction, 
which may act between pairs of  vertices. If  the strong interaction acts 
between distinct vertices u and v, we write u • v and say that u, v are 
adjacent. If  u • v, we call the pair uv ={u, v} an edge. In mathematical 
terminology, a pair G =  (V, E),  where V is a finite set of vertices and E is 
a set of edges on V, is called a graph. A graph is even (odd) if it has an 
even (odd) number of vertices. 

In this paper, when we refer to a "particle" we shall mean a hadron, 
lepton, or gauge boson (photon or weak gauge boson). Our goal is to 
represent each of  these particles by a unique labeled graph which describes 
the particle's physical properties. Before embarking on this program, we 
shall need some graph-theoretic definitions. 

A path in a graph G =  (V, E) is a set of (not necessarily distinct) 
vertices vl,. �9  vn e V such that v~ • v~+l, i = 1 , . . . ,  n - 1. Moreover, we call 
v, and v, the initial and final vertices of the path, respectively. If the initial 
and final vertices are equal, the path is called a cycle. We say that G is 
connected if any two vertices of  G are joined by a path. A path is even 
(odd) if it contains an even (odd) number of distinct vertices. A subgraph 
H of G is complete if any two distinct vertices u, v in H satisfy u • v. A 
clique in G is a complete subgraph of G. A clique K is an n-clique if its 
cardinality IKI = n. 

We assume that every particle is described by a connected graph. Since 
there is a great variety of connected graphs, we must impose certain physical 
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rules to distinguish those that correspond to physical particles. First, there 
appear to be two types of vertices, valence vertices and interaction vertices. 
The valence set (i.e., the set of valence vertices) consists of the basic building 
blocks of a particle and these vertices all interact strongly with each other, 
while the interaction set describes weak interactions between valence vertices 
(they also describe electromagnetic interactions, but these will be considered 
later). It follows that the valence set forms a clique in the connected graph 
representing a particle. 

We next assume that every vertex is a spin-�89 fermion. Thus each vertex 
has spin �89 (denoted 1') or spin-�89 (denoted +) and the total spin of a particle 
is the sum of the spins of its constituent vertices. It follows that fermions 
(leptons, baryons) have an odd number of vertices and bosons (mesons, 
gauge bosons) have an even number of vertices. Since the spin of a particle 
should be determined by its valence clique, we conclude that the valence 
clique of a fermion is odd and the valence clique of a boson is even. It 
follows that the interaction set for any particle is even. These properties 
are summarized in the following configuration rule. 

Rule (C). Leptons and baryons are represented by odd connected 
graphs containing an odd valence clique, while mesons and gauge bosons 
are represented by even connected graphs containing an even valence clique. 

We now make Rule (C) more precise. Since leptons appear to be 
"pointlike," structureless particles, they should have the simplest valence 
clique. We thus assume that the valence clique of a lepton has just one 
element. We next assume that the valence clique of  a baryon is an odd 
n-clique with n -- 3. If n = 3, we say that the baryon is in its ground state. 
The valence clique of a meson is an even n-clique with n -> 2, and if n = 2, 
the meson is in its ground state. Since photons mediate the electromagnetic 
interaction, we assume that all their vertices are interaction vertices, so their 
valence clique is empty. In the next section we shall assume that the charge 
of a particle is determined by its valence clique. Thus, although weak bosons 
mediate the weak interaction, they can have electric charge, so their valence 
clique cannot be empty. We assume that the valence clique of a weak gauge 
boson is a 2-clique. 

Since the total spin of a particle is determined by the spins of its valence 
vertices, the spins of its interaction vertices must cancel. The simplest way 
for this to be achieved "locally" is to assume the following spin rule. 

Rule ($1). Adjacent interaction vertices have opposite spin. 

Of course, Rule (Sl)  does not guarantee, at this point, that the spins 
of interaction vertices cancel, but this will follow from (S1) and later rules. 
We call a path v l , . . . ,  vn where the initial and final vertices are distinct 
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Fig. 1. Photons. 

valence vertices and the others are interaction vertices an interaction path 
(it is assumed that there are interaction vertices in such a path). If n is even 
(odd), we call the edge VlV, a + ( - )  interaction. Experiments indicate that 
weak interactions between valence vertices are spin dependent. The simplest 
way to incorporate this is the following rule, which is quite similar to (S1): 

Rule  (S2). If v l , . . . ,  Vn is an interaction path, then vl, v2 and v,-1, v, 
have opposite spin. 

It folloWs from ($2) that if uv is a - (+) interaction, then the spins of  
u and v agree (are opposite). Of course, uv cannot be both a + and - 
interaction. 

We know that the spin of a photon is 1. The simplest configurations 
satisfying the above criteria in which the spin must  be 1 are shown in Figure 
1. We take these to represent photons of increasing wavelength. 

3. CHARGE 

We make the following assumptions concerning electric charge. The 
electric charge of a particle is determined by its valence clique and all 
interaction vertices have electric charge 0. Of course, the total electric charge 
must be an integer. The valence vertex for a massive lepton has electric 
charge +1. The valence vertex of a neutrino has electric charge 0. The 
valence vertices of hadrons have electric charge +1/3,  +2/3. It follows that 
all vertices of a photon have electric charge 0. The weak gauge bosons are 
illustrated in Figure 2. 

o o 

Fig. 2. Weak gauge bosons. 
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Let V be the vertex set for a graph which represents a particle. A 
function f :  V--> R is called a color function if there exists a number f ~ 

such that 

1 ~ f ( v ) = f  

where K is the valence clique (if K ~ Q) or any edge joining two interaction 
vertices. A color function describes a distribution of color charges on the 
vertices and f corresponds to "white" or "colorless." Thus, the valence 
clique has average color white and is colorless. Similarly, any interaction 
edge is colorless. We say that two vertices u, v have the same color state if 
f ( u )  = f ( v )  for any color function f There always exist color functions, 
since any constant function is one. As we shall see later, most particles 
possess nonconstant color functions. Notice that if uv is a - interaction, 
then u and v have the same color state, while if uv is a + interaction, then 
f ( u )  = 2 f - f  (v) for any color function f 

We say that a valence vertex v is flowered if v is contained in an odd 
cycle in which all the other vertices are interaction vertices. I f  v is flowered, 
it is easy to see that f ( v ) = f  for any color function f, so v is colorless. We 
think of flowered vertices as those that are involved in a weak self-interaction. 

We say that two valence vertices u, v are in the same interaction state 
when u is in a + interaction ( -  interaction, flowered) if and only if v is in 
a + interaction ( -  interaction, flowered). Even if u and v are in the same 
interaction state, their interaction configurations may be different. In Figure 
3a two vertices are flowered, but the flowers are different. Figures 3b and 
3c show similar possibilities for + interactions and - interactions, respec- 
tively. In these figures we denote valence vertices by open circles and 
interaction vertices by dark circles. We say that two valence vertices u, v 
have the same configuration state if u and v have the same interaction state 
and the interactions are identical. 

b c 

a Fig.  3. I n t e r a c t i o n  states.  
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We are now ready to present the remaining rules. The following rule 
is the Pauli exclusion principle and the subsequent rule is clear. 

Rule (P). Two valence vertices in a single particle cannot have the 
same spin, electric charge, color state, and configuration state. 

Rule ($3). If  the spins of all vertices composing a particle are reversed, 
the particle is unaltered. 

The next rule states that all (weak) interactions are given by those 
already considered. 

Rule (1). An interaction vertex of a lepton or hadron is contained in 
a + interaction or a flower. 

The last two rules are similar to symmetry and antisymmetry principles 
for wave functions. 

Rule (2). If two valence vertices are the only vertices in a certain 
interaction state, then interchanging their spins does not alter the particle. 

Rule (3). If two valence vertices have the same electric charge and 
interaction state, then their spins are equal. 

4. D I A G R A M S  

Using the rules developed in previous sections, we now have a manage- 
able number of allowed particle graphs. We can now represent each particle 
by an essentially unique allowed labeled graph or diagram, and conversely 
each allowed diagram should correspond to a unique particle. The diagram 
of a particle is obtained by drawing a corresponding graph in which each 
vertex is labeled by its spin and electric charge. The space of  color functions 
is determined by the graph, so no color charge labels are necessary. To 
avoid complicated figures, we frequently only draw the valence clique, 
indicate flowered vertices by dark circles, unflowered vertices by open 
circles, + interactions by plus signs, and - interactions by minus signs. We 
also frequently represent cliques by straight line paths. Figure 4 illustrates 
two equivalent diagrams where we have omitted the vertex labels for 
simplicity. 

The gauge bosons are already diagrammed in Figures 1 and 2. To save 
space, we only diagram particles, the corresponding antiparticles being 
obtained by taking the negative of all electric charges. We also frequently 
omit the 0 for zero electric charges. Figure 5 illustrates the diagrams for 
the leptons. One reason why ~-- has three petals and not two is given in 
Section 6. 
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Equivalent diagrams. 
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Figure 6 illustrates the diagrams for the ground-state mesons. Notice 
that flowered, electric charge • vertices correspond to strange quarks, 
flowered, electric charge +2/3 vertices correspond to charmed quarks, and 
+ interactions correspond in some sense to bottom quarks. Although it 
cannot be seen in the diagram, it is assumed that flowered, electric charge 

O-l,r ~ -  l,t, 4 ~ ,I, 

4,15 ~ 4 ,  

Fig. 4. 
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Fig. 5- Leptons. 
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Fig. 6. Mesons. 

•  vertices have one petal, while flowered, electric charge •  vertices 
have three petals. The classifications of this model seem to correspond to 
the usual quark model up to the 7/c, J/@ level, but then the two models 
diverge. The present model predicts that there can be no spin-1 ground-state 
B meson and no spin-0 ground-state Y particle, while the quark model 
predicts such particles. 

We propose that the excited-state diagrams are obtained from the 
ground-state diagrams by the addition of (1/3, - 1 / 3 )  and (2/3, - 2 / 3 )  pairs 



Quantum Graphics 815 

"- 0 0 0 ~ 0 0 0 -- 0 0 0 

0 0 0 0 

~; -J~ ~* - ~  ~.~ -}~ ~- 
0 0 O- - - - - - - - -C 0 0 0 

Fig. 7. Excited states. 
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Fig. 8. Baryons. 
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Fig. 9. Proton. 

As before we propose that excited-state diagrams are obtained from the 
ground states by the addition of (1/3, -1/3) and (2/3, -2/3) pairs of valence 
vertices. 

Until now we have not considered electromagnetic interactions. We 
assume that these are independent of weak interactions and are given by 
photonlike interaction paths which do not carry color. We do not need to 
include them in the diagram of a particle, since their configurations are 
already determined by the spins (and their strength by the electric charge) 
of the interacting valence particles. Figure 9 illustrates the electromagnetic 
interactions for the proton. 

5. DECAY PROCESSES 

In this section we illustrate some decay processes in terms of diagrams. 
The "decay" of a diagram proceeds according to the following rules. 

Rule (D1). Flowers and • interactions can be formed to produce 
forbidden diagrams. 

Rule (D2). Electric charge and spin can redistribute as long as the total 
electric charge remains constant. 

Rule (D3). Edges can be created and destroyed as long as the baryon 
number remains constant. 
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Fig. 10. Decay  processes.  

Rule (D4). Final diagrams must be allowed diagrams. 

Of course, various decay modes are usually possible. It is hoped that once 
the dynamics of the theory is developed, the possible decay modes and 
their probabilities can be predicted. Figures 10-12 illustrate a few decay 
processes. 
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Fig. 11. Decay  processes.  
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Fig.  12. D e c a y  p r o c e s s e s .  

6. HYPERSPACE REPRESENTATION 

In this section we represent particles by vectors in a 48-dimensional 
linear space which we call hyperspace. This may be the appropriate space 
on which a dynamical theory can be developed. 

We first define a color space representation. Let G = ( V, E) be a graph 
representing a particle and let VG be the linear space of color functions on 
G. A set of  valence vertices { v l , . . .  ,v,} is called VG-dense if f, g~ VG and 
f (v i )  = g(vi), i = 1 , . . . ,  n, imply f =  g. A VG-dense set is minimal if it does 
not contain a strictly smaller Vo-dense set. Let {v~, . . . ,  v,} be a minimal 
VG-dense set. It can be shown that dim VG = n (Gudder and Riittimann, 
1986). Moreover, there exist unique elements f l , . . . , f ,  ~ VG such that 
f(v~) = 6u, i,j = 1 , . . . ,  n, and these elements form a basis for VG (Gudder 
and Rfittimann, 1986). It follows that any f ~  VG has the unique rep- 
resentation 

f = ~ f ( v i ) f  
i = I  

For f, g ~ VG, define the inner product 

( f  g) = Y. f(vi)g(vi)  
i=1 

Then Vc becomes a real inner product space with orthonormal basis 
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{ f i , . . . , f , } .  For v~ V, define v*~ VG by 

i=1 

It follows that f ( v ) = ( f ,  v*) for a n y f e  Vo, and for u, v c  V we have 

tl 
(u*, v*)= 2 f~(u)f,(v) 

i=1 
We call the above representation the color space representation of G. 

We obtain an equivalent representation on R ~ by defining the unitary 
transformation T: Vo ~ N~ given by 

Tf  = ( f ( v , ) , . . .  , f ( v , ) )  

We then have 

T v * = ( f , ( v ) , . .  . , f , ( v ) )  

In order to represent a vertex v c V by a unit vector v c ~", we define 
v'= Tv*/ll Tv*ll. Figure 13 illustrates color representations for various 
baryon graphs as well as some forbidden graphs which occur during decay 
processes. These representations show how the vertices move in color space 
during decay processes. They also show that in order to distinguish between 
strange and charmed vertices, the charmed vertices must have three (or 
more) petals. 

Similar representations can be given for meson graphs. In order to 
distinguish between the vertex and antivertex of a meson, we assume that 
the color of an antivertex is the negative of the color for the corresponding 
vertex. This results in multiplying the coordinates of an antivertex by -1  
in the color representation. Color representations for some meson graphs 
are shown in Figure 14. 

The color space representation does not give a complete description 
of a particle, since it does not specify the spin and electric charge of a 
vertex, nor does it distinguish between vertices and antivertices. In order 
to give such a complete description we form the 48-dimensional hyperspace 
R 48. Hyperspace is the tensor product 

~48 = ~3 ~) ~2 (~) ~2(~) ~4 

where R 3 is the color space already considered, [~2 is the spin space, the 
second R 2 is the vertex-antivertex space, and ~4 is the electric charge space. 
We take the usual standard bases for these spaces. In the spin space [~2, 
(1,0) represents spin up and (0, 1) spin down, In the vertex-antivertex 
space R 2, (1, 0) represent a vertex and (0, 1) an antivertex. In the electric 
charge space R 4, (1, 0, 0, 0) represents electric charge - 1 / 3  for vertices and 
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Fig. 13. Baryon color representat ions.  



822 Gudder  

v, K 

I% �9 t} L(2, 

2 
{A t 

�9 3 

~l':(_z -~ z 

v 

/ v,.' 

o~tz(gjg~a _$)1 

Fig. 13. Continued. 

+1/3 for antivertices, (0, 1, 0, 0) represents +2/3 for vertices and -2/3  for 
antivertices, (0, 0, 1, 0) represents -1 for vertices and +1 for antivertices, 
and finally (0, 0, 0, 1) represents electric charge 0. 

We can now construct the hyperspace representation of particles. For 
example, in hyperspace, the neutron is represented by three vectors, 

0 , 1  | 1 1 , 

n= |  ~ ( ~ )  | 0 ) |  | 
0 
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Fig. 14. Meson color representations. 

The Y~- baryon is represented by five vectors, 

~1 [ i ' |  ( i )  

~/oJ ','| 1:/~/o),o, ,o, 
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The 7r ~ meson is represented by two vectors, 

"n'~ | 1 7 4 1 7 4  0 ' -  ~ | 1 7 4 1 7 4  

Gudder 
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